SERPAR® Crossflow Double Valves with Pressure Switches

ROSS Air Controls
Why Use a Double Valve?

The double valves presented in this leaflet provide additional safety in the operation of pneumatically controlled presses and other power-driven machines, in accordance with current European health and safety requirements.

Every ROSS double valve has two valve elements in a common housing, which are both actuated - independently of each other - by separate solenoid pilot valves. The valve elements share common inlet, outlet and exhaust ports. When the pilot valves are energized simultaneously, the two main valve elements are operated simultaneously so that during normal operation the valve works like a 3/2 valve with a single valve element.

However, if one of the valve elements does not behave normally (either failing to open or failing to close) the valve is designed to keep the pressure at the outlet port at less than 2% of the inlet pressure. This residual pressure is not enough to operate the clutch or brake.

Because there is a second "redundant" valve element, the ROSS double valves presented in this leaflet meet high safety requirements. The likelihood of both valve elements malfunctioning on the same cycle is considered extremely remote.

CAUTION: On mechanical presses and other hazardous machines with pneumatically operated clutches and brakes double valves at least should be used. Double valves without self-monitoring should only be used if current regulations permit this or if the valve is equipped with a control system which, in conjunction with the safety control system, makes possible the monitoring of valve and machine. If the valves are used on presses in Germany, the "Safety Regulations For Control Systems On Power-driven Presses for Metalworking EN 692 (revision)" must be observed.

For applications not covered by standard valves, please consult ROSS. We reserve the right to make technical modifications in the course of further product development.

A Valve Company with a Tradition

For almost 40 years ROSS has been developing double valves which have made a significant contribution to the operating safety of pneumatically controlled presses. During this period our range of double valves has been developed continuously in response to the needs of press manufacturers and users. Monitoring devices have also been offered in a variety of designs to satisfy different requirements.

The range of double valves with pressure switches presented in this leaflet incorporates all our experience and represents the state-of-the-art in ROSS double valves.

Selecting the double valve best suited to each application requires considerable technical knowledge. If you need further information or technical advice, please contact ROSS EUROPA or your ROSS sales office.

SERPAR ® Crossflow Double Valves with Pressure Switches

The ROSS - SERPAR Crossflow series represents our latest developments in double valve technology. Its design is distinguished by two crossflow passages and special valve poppet and spool elements which provide the valve's unique flow characteristics.

PRESSURE SWITCHES: The two pressure switches are mounted on an adaptor and measure the pressure in the crossflow passages of the main valve. In normal operation the two valve elements move simultaneously and the pressure switches send a matched pair of signals to the control system. If there is a malfunction and the valve elements do not move simultaneously, the pressure switches send an unmatched pair of signals, the control system switches off the valve and prevents any further valve operation. Therefore the two pressure switches, when correctly connected to the safety circuit, carry out a reliable monitoring function.

VALVE SIZES: Depending on the size (4, 8, 12 or 30) the valves are supplied with either threaded ports in the housing or threaded ports in mounting flanges which are screwed to the valve housing. Port sizes range from G 3/8 to G 1-1/2.

CONSTRUCTION: The valve housing is made of die-cast aluminum. The two valve elements (see diagram) are of lightweight construction for low actuating forces, fast response and long working life. Each valve element is guided at the top by the piston and at the bottom by the stainless steel stem, with no other sliding bearing surface in between.

For applications not covered by standard valves, please consult ROSS. We reserve the right to make technical modifications in the course of further product development.

A Valve Company with a Tradition

For almost 40 years ROSS has been developing double valves which have made a significant contribution to the operating safety of pneumatically controlled presses. During this period our range of double valves has been developed continuously in response to the needs of press manufacturers and users. Monitoring devices have also been offered in a variety of designs to satisfy different requirements.

The range of double valves with pressure switches presented in this leaflet incorporates all our experience and represents the state-of-the-art in ROSS double valves.

Selecting the double valve best suited to each application requires considerable technical knowledge. If you need further information or technical advice, please contact ROSS EUROPA or your ROSS sales office.
AIR FLOW PATHS. Parallel flow paths develop equal forces on the valve elements in both actuated and deactuated modes. This enables both valve elements to respond equally to pilot pressures and to move simultaneously. The air flow paths of the valve in different operating modes are shown below.

VALVE ELEMENTS DEACTUATED. With both valve elements in the rest position, the two inlet valve poppets are held firmly against their seats by inlet air pressure. The exhaust poppets are open and the outlet port is connected to the exhaust port. The pressure monitoring passages (shown as broken lines) to the pressure switches are also exhausted.

VALVE ELEMENTS ACTUATED. With both valve elements actuated, air flows from the inlet, past the two inlet poppets and through the two crossflow passages to the outlet port. The exhaust poppets are closed and the pressure monitoring passages to the pressure switches are both under the same pressure, corresponding to inlet pressure. When the two valve elements return to the rest position, the design of the spool elements on the valve stems allows the crossflow passages and the pressure monitoring passages to be exhausted through the exhaust port.

MALFUNCTION. A malfunction in the system or in the valve itself could cause one valve element to be open and the other closed. In this event, inlet air can pass the inlet poppet of the open valve element but is mostly blocked by the spool of the closed valve element. The small amount of air which can pass the spool escapes through the open, over-dimensioned exhaust port, so that the pressure at the outlet port is less than 2% of inlet pressure.

The pressures in the two pressure monitoring passages are very different, so that only one of the two pressure switches is placed under inlet pressure and the monitoring system can detect the asynchronous condition and shut down the valve.

CONTENTS:

General Information Page 2, 3
Valve Size 4 Page 4, 6, 8
Valve Sizes 8, 12 and 30 Page 5, 7, 8
Pressurizing and Exhausting Times Page 9
Pressure Switches Page 9
Monitor Unit Page 10
Important Notes Page 2, 3, 11
Warranty .. Page 11

CAUTION: Our certification for product liability insurance relates only to the valve configurations described in this catalogue. If valves are modified, the certification becomes null and void.

The pressure switches are designed to monitor the valve function, NOT the working air pressure. The adjustment is fixed and should not be changed.
The valves listed above have been approved by the following European testing and certificating authorities:

- Fachausschuss Maschinenbau, Hebezeuge, Hütten- und Walzwerksanlagen, Deutschland: Certificate No. 97170
- Schweizerische Unfallversicherungsanstalt - SUVA: Certificate No. 4201
- AB Svensk Anläggningsprovning Maskinteknik, Schweden: Certificate No. M118-92

STANDARD SPECIFICATIONS

Pilot Solenoids: Two, rated for continuous duty.

Standard voltages: 24, 48, 110, 220 volts; 50/60Hz; 24, 110 volts d.c. Other voltages are available.

Voltage at pressure switches must not exceed 250 volts.

Power Consumption: Each solenoid - 35 VA maximum in-rush, 22 VA holding on 50 or 60 Hz. 14 watts nominal on d.c.

Electrical Connection: Connectors according to DIN 43650 A (ISO 4400), must be ordered separately.

Ambient Temperature: 4°C to 50°C.

Media Temperature: 4°C to 80°C.

Flow Media: Filtered air (Filter rating < 50 µ).

Pressure Range: 2 to 8,5 bar.

Enclosure Rating: IP 65 according to IEC-Publication 144 and DIN 40050, Sheet 1.

OPERATION

Both solenoids must be energized simultaneously to shift the valve; maintained signal required to keep valve shifted; spring return.

When the valve is not actuated a signal is present at the normally closed output line of each pressure switch. When the valve is actuated, the switch circuits are reversed and a signal is present at the normally open output lines.

Any abnormal pairing of output signals will tell the external monitoring system that a malfunction has occurred initiating a response to inhibit further valve actuation.

Caution: If the system must be reset, electrical signals to both solenoids must be removed to prevent the machine from immediately recycling and producing a potentially hazardous condition.

* **EXTERNAL MONITOR REQUIRED**

The valves on this page do not have a built-in monitor, and so must only be used in conjunction with an external monitoring system. Such a monitoring system must be capable of inhibiting the operation of the valve and associated machinery in the event of a failure within the valve. Consult ROSS for more details.
Standard Specifications

Pilot Solenoids: Two, rated for continuous duty.

Standard Voltages: 24, 48, 110, 220 volts; 50/60 Hz; 24, 110 volts d.c. Other voltages are available.

Voltage at pressure switches must not exceed 250 volts.

Power Consumption: Each solenoid, 87 VA maximum in-rush, 30 VA holding on 50 or 60 Hz. 14 watts nominal on d.c.

Electrical Connection: Connectors according to DIN 43650 A (ISO 4400); must be ordered separately.

Ambient Temperature: 4°C to 50°C.

Media Temperature: 4°C to 80°C.

Flow Media: Filtered air (Filter rating < 50 µ).

Pressure Range: 2 to 8.5 bar.

Enclosure Rating: IP 65 according to IEC-Publication 144 and DIN 40050, Sheet 1.

Operation

Both solenoids must be energized simultaneously to shift the valve; maintained signal required to keep valve shifted; spring return.

When the valve is not actuated a signal is present at the normally closed output line of each pressure switch. When the valve is actuated, the switch circuits are reversed and a signal is present at the normally open output lines.

Any abnormal pairing of output signals will tell the external monitoring system that a malfunction has occurred initiating a response to inhibit further valve actuation.

Caution: If the system must be reset, electrical signals to both solenoids must be removed to prevent the machine from immediately recycling and producing a potentially hazardous condition.

External Monitor Required

The valves on this page do not have a built-in monitor, and so must only be used in conjunction with an external monitoring system. Such a monitoring system must be capable of inhibiting the operation of the valve and associated machinery in the event of a failure within the valve. Consult ROSS for more details.

The double valves listed have been approved by the following European testing and certificating authorities:

- Fachausschuss Maschinenbau, Hebezeuge, Hüttene. Walzwerksanlagen, Deutschland: Cert. No. 97170
- Schweizerische Unfallversicherungsanstalt - SUVA: Certificate No. 4202/4203/4204
- AB Svensk Anläggningsprovning Maskinteknik, Schweden: Certificate No. M118-92

Please read carefully and thoroughly all of the **CAUTIONS** on pages 2, 3 and 11.
Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Size 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pilot Assembly</td>
<td>924B79</td>
</tr>
<tr>
<td>(specify voltage)</td>
<td></td>
</tr>
<tr>
<td>2 Solenoid Valve</td>
<td>1037A79</td>
</tr>
<tr>
<td>2a Coil (specify voltage)</td>
<td>319B33</td>
</tr>
<tr>
<td>3 Connector Socket</td>
<td>937K87</td>
</tr>
<tr>
<td>4 Pressure Switch</td>
<td>518E30</td>
</tr>
<tr>
<td>5 Connector Socket</td>
<td>522E30</td>
</tr>
<tr>
<td>6 Valve Body Assembly*</td>
<td></td>
</tr>
<tr>
<td>7 Gasket</td>
<td>484B11</td>
</tr>
<tr>
<td>8 Silencer</td>
<td>318C86</td>
</tr>
<tr>
<td>9 Flange**</td>
<td></td>
</tr>
<tr>
<td>D Body Kit</td>
<td>541K77</td>
</tr>
</tbody>
</table>

* Flanged model (for model numbers of valve body assemblies with threaded port, refer to Chart 1).

** see Chart 2 and 3.

Chart 1 - Threaded Port Models

<table>
<thead>
<tr>
<th>Size</th>
<th>Port Size</th>
<th>Inlet</th>
<th>Model-No. Valve Body Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>G 3/8</td>
<td>right</td>
<td>D1436B75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>left</td>
<td>D1438B75</td>
</tr>
<tr>
<td>4</td>
<td>G 1/2</td>
<td>right</td>
<td>D1437B75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>left</td>
<td>D1439B75</td>
</tr>
<tr>
<td>4</td>
<td>G 3/4</td>
<td>right</td>
<td>D1440B75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>left</td>
<td>D1441B75</td>
</tr>
</tbody>
</table>

Chart 2 - Flanged Models

<table>
<thead>
<tr>
<th>Size</th>
<th>Inlet</th>
<th>Model-No. Valve Body Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>right</td>
<td>1434B75</td>
</tr>
<tr>
<td></td>
<td>left</td>
<td>1435B75</td>
</tr>
</tbody>
</table>

Chart 3 - Flange Model Numbers

<table>
<thead>
<tr>
<th>Flange</th>
<th>Size 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 3/8</td>
<td>D730B25</td>
</tr>
<tr>
<td>G 1/2</td>
<td>D731B25</td>
</tr>
<tr>
<td>G 3/4</td>
<td>D732B25 and D739B25</td>
</tr>
</tbody>
</table>
SERPAR®-Crossflow
Double Valves with Pressure Switches
Sizes 8, 12, 30

Chart 1
Threaded Port Models

<table>
<thead>
<tr>
<th>Size</th>
<th>In</th>
<th>Out</th>
<th>Model No. Valve Body Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>G 1/2</td>
<td></td>
<td>D341C78</td>
</tr>
<tr>
<td></td>
<td>G 3/4</td>
<td></td>
<td>D342C78</td>
</tr>
<tr>
<td>12</td>
<td>G 3/4</td>
<td></td>
<td>D320C78</td>
</tr>
<tr>
<td></td>
<td>G 1</td>
<td></td>
<td>D321C78</td>
</tr>
</tbody>
</table>

Chart 2
Flange Model Numbers

<table>
<thead>
<tr>
<th>Flange</th>
<th>Size 8</th>
<th>Size 12</th>
<th>Size 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1/2</td>
<td>D712B25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G 3/4</td>
<td>D713B25</td>
<td>D675B25</td>
<td>-</td>
</tr>
<tr>
<td>G 1</td>
<td>D729B25</td>
<td>D676B25</td>
<td>-</td>
</tr>
<tr>
<td>G 1-1/4</td>
<td>-</td>
<td>D677B25</td>
<td>D681B25</td>
</tr>
<tr>
<td>G 1-1/2</td>
<td>-</td>
<td>-</td>
<td>D682B25</td>
</tr>
</tbody>
</table>
Sizes 4, 8, 12, 30

SERPAR®-Crossflow
Double Valves with Pressure Switches
Series D3500

Size 4

Sizes 8, 12, 30

<table>
<thead>
<tr>
<th>Size</th>
<th>①</th>
<th>②</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>224</td>
<td>172</td>
<td>284</td>
<td>184</td>
<td>128</td>
<td>64</td>
<td>55</td>
<td>53</td>
<td>220</td>
<td>46</td>
<td>46</td>
<td>32</td>
<td>7.2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>230</td>
<td>178</td>
<td>316</td>
<td>219</td>
<td>140</td>
<td>70</td>
<td>65</td>
<td>76</td>
<td>225</td>
<td>42</td>
<td>46</td>
<td>46</td>
<td>8.2</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>315</td>
<td>-</td>
<td>420</td>
<td>282</td>
<td>218</td>
<td>110</td>
<td>48</td>
<td>150</td>
<td>356</td>
<td>56</td>
<td>52</td>
<td>115</td>
<td>13.5</td>
</tr>
</tbody>
</table>
Diaphragm Pressure Switch with Stepless Adjustment

Connector Socket
Model No.: 522E30

Pressure Switch
Model No.: 518E30

SPECIFICATION
- **Body material:** zinc plated steel
 (Fe/Zn 12 cB)
- **Thread:** G 1/4
- **Adjustment:** 1.5 bar
- **Tolerance in bar (at room temp.):** ± 0.2
- **Over-pressure up to bar**: 100
- **Diaphragm compatibility:** Air, hydraulic-oil, engine-oil etc.

Over-pressure safety levels refer to the hydraulic or pneumatic part of the pressure switch

Duty: 4 A/250 V~
Protection: IP 65, terminals IP 00
Maximum operation: 200/min.
Temperature range: -30°C to +100°C
Maximum current: 250 V~
Hysteresis adjustment: 10 to 30% (adjusted at factory)
Mechanical life: 10⁶ operations (at pressures up to 50 bar)
Protection to IP 65:
This type test is not transferable to all universal conditions. Checking the plug connections for suitability is the responsibility of the purchaser and user.

Diaphragm Pressure Switch with Stepless Adjustment

Pressurizing and Exhausting Times

Comparison of Normal (Sides A+B) and Faulted (Side A or B)

Pressurizing and Exhausting Times at 7 bar

<table>
<thead>
<tr>
<th>Valve Type</th>
<th>Average k_v</th>
<th>Flow to</th>
<th>Average Pressurizing and Exhausting Times (Milliseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IN</td>
<td>OUT</td>
<td>EXH.*</td>
</tr>
<tr>
<td>CF 4</td>
<td>2.6</td>
<td>OUT</td>
<td>-</td>
</tr>
<tr>
<td>CF 4</td>
<td>2.6</td>
<td>EXH.**</td>
<td>-</td>
</tr>
<tr>
<td>CF 8</td>
<td>3.0</td>
<td>OUT</td>
<td>-</td>
</tr>
<tr>
<td>CF 8</td>
<td>3.0</td>
<td>EXH.**</td>
<td>-</td>
</tr>
<tr>
<td>CF 12</td>
<td>8.2</td>
<td>OUT</td>
<td>-</td>
</tr>
<tr>
<td>CF 12</td>
<td>8.2</td>
<td>EXH.**</td>
<td>-</td>
</tr>
<tr>
<td>CF 30</td>
<td>18.2</td>
<td>OUT</td>
<td>-</td>
</tr>
<tr>
<td>CF 30</td>
<td>18.2</td>
<td>EXH.**</td>
<td>-</td>
</tr>
</tbody>
</table>

* without Silencer
** The use of surge suppressors in the solenoid circuits may slow down the de-energisation of the solenoid coils and thereby may delay response of the valve elements which may increase exhaust time.
Suggested Connection between AZR 20P2*-Unit and Press Control System

Block Schematic

Connection Diagram

* Consult ROSS for details.
Cautions

PRE-INSTALLATION or SERVICE
1. Before servicing a valve or other pneumatic component, be sure that all sources of energy are turned off, the entire pneumatic system is shut off and exhausted, and all power sources are locked out (ref: EN 1037).

2. All ROSS products, including service kits and parts, should be installed and/or serviced only by persons having training and experience with pneumatic equipment. Because any installation can be tampered with or need servicing after installation, persons responsible for the safety of others or the care of equipment must check every installation on a regular basis and perform all necessary maintenance.

3. All applicable instructions should be read and complied with before using any fluid power system in order to prevent harm to persons and/or equipment. In addition, overhauled or serviced valves must be functionally tested prior to installation and use.

4. Each ROSS product should be used within its specification limits. In addition, use only ROSS parts to repair ROSS products. Failure to follow these directions can adversely affect the performance of the product or result in the potential for human injury.

FILTRATION and LUBRICATION
5. Dirt, scale, moisture, etc. are present in virtually every air system. Although some valves are more tolerant of these contaminants than others, best performance will be realized if a filter is installed to clean the air supply, thus preventing contaminants from interfering with the proper performance of the equipment. ROSS recommends a filter with a 5-micron rating for normal applications.

6. All standard ROSS filters and lubricators with polycarbonate plastic bowls are designed for compressed air applications only. Do not fail to use the metal bowl guard, where provided, to minimize danger from high pressure fragmentation in the event of bowl failure. Do not expose these products to certain fluids, such as alcohol or liquified petroleum gas, as they can cause bowls to rupture, creating a combustible condition, hazardous leakage, and the potential for human injury. Immediately replace a crazed, cracked or deteriorated bowl. When the bowl gets dirty, replace it or wipe it with clean dry cloth.

7. Only use lubricants which are compatible with materials used in the valves and other components in the system. Normally, compatible lubricants are petroleum base oils with oxidation inhibitors, and an aniline point between 82°C and 104°C, and viscosity VG 32 according to IOS 3448 (32mm²/s at 40°C), or higher. Oils with phosphate type additives, such as zinc dithiophosphate, must be avoided because they can harm polyurethane valve components. The best oils to use in pneumatic systems are those specifically compounded for air line lubricator service.

AVOID INTAKE/EXHAUST RESTRICTION
8. Do not restrict the air flow in the supply line. To do so could reduce the pressure of the supply air below the minimum requirements for the valve and thereby cause erratic action.

9. Do not restrict a poppet valve’s exhaust port as this can adversely affect its operation. Exhaust silencers must be resistant to clogging and have flow capacities at least as great as the exhaust capacities of the valves. Contamination of the silencer can result in reduced flow and increased back pressure. ROSS expressly disclaims all warranties and responsibility for any unsatisfactory performance or injuries caused by the use of the wrong type, wrong size, or inadequately maintained silencer installed with a ROSS product.

DOUBLE VALVES
10. Mechanical power presses and other potentially hazardous machinery using a pneumatically controlled clutch and brake mechanism must use a press control double valve with a monitoring device. A double valve without a self-contained monitoring mechanism must use a press control double valve with a monitoring device. All double valve installations involving hazardous applications should incorporate a monitoring system which inhibits further operation of the valve and machine in the event of a failure within the valve mechanism.

ENERGY ISOLATION/EMERGENCY STOP
11. Per specifications and regulations, ROSS L-O-X® and L-O-X®/EEZ-ON® products are defined as energy isolation devices, NOT AS EMERGENCY STOP DEVICES.

Warranty

Products manufactured by ROSS are warranted by ROSS to be free of defects in material and workmanship for a period of one year from the date of purchase. ROSS’ obligation under this warranty is limited to repair or replacement of the defective product or refund of the purchase price paid solely at the discretion of ROSS and provided such defective product is returned to ROSS freight prepaid and upon examination by ROSS such product is found to be defective. This warranty shall be void in the event that product has been subject to misuse, misapplication, improper maintenance, modification or tampering.

DISCLAIMERS: THE WARRANTY EXPRESSED ABOVE IS IN LIEU OF AND EXCLUSIVE OF ALL OTHER WARRANTIES AND ROSS EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES EITHER EXPRESSED OR IMPLIED WITH RESPECT TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ROSS MAKES NO WARRANTY WITH RESPECT TO ITS PRODUCTS MEETING THE PROVISIONS OF ANY GOVERNMENTAL OCCUPATIONAL SAFETY AND/OR HEALTH LAWS OR REGULATIONS. IN NO EVENT SHALL ROSS BE LIABLE TO PURCHASER, USER, THEIR EMPLOYEES OR OTHERS FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM A BREACH OF THE WARRANTY DESCRIBED ABOVE OR THE USE OR MISUSE OF THE PRODUCTS. NO STATEMENT OF ANY REPRESENTATIVE OR EMPLOYEE OF ROSS SHALL EXTEND THE LIABILITY OF ROSS AS SET FORTH HEREIN.